Abstract

We report an experimental study of the possibility of high-speed optical coherence tomography (OCT) for high-resolution imaging characterization of detrusor dynamic morphophysiology and analysis of the mechanisms that lead to geriatric incontinence (GI). The spontaneous contractility of intact fresh rabbit bladders was imaged with two-dimensional (2D) OCT ex vivo at up to 8 frames/s. The time-lapse 2D OCT images were postprocessed by image segmentation and fast-Fourier-transform analysis to characterize the dynamic morphological changes of the bladder contractility. In addition, we studied young and aging rat bladders to analyze the differences in dynamics. Preliminary results of our ex vivo study reveal that time-lapse OCT can track the contractile waves of bladders at high spatial resolution and characterize their dynamic morphophysiology in terms of amplitude, phase, and frequency. The results suggest that time-lapse OCT has the potential to act as a detrusor optical biopsy to enhance the diagnosis of detrusor dysfunction and thus of the mechanisms that lead to GI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call