Abstract

We have fabricated polymer micro-lens array by self-organized dewetting inside the microchannel, which shows remarkable enhancement in the resolution, contrast and more than 10 times add-on magnification to a microscope. These lenses are demonstrated to resolve sub-micrometer features and detect moving micro-particles when suspension is flown in a microchannel. Polystyrene (PS) micro-lenses are fabricated on a polydimethylsiloxane (PDMS) substrate using the controlled dewetting of PS thin film then this PDMS substrate is used to close the microchannel with inverted micro-lenses on it. An aqueous suspension of polystyrene particles is flown through the microchannel and we have observed the particles through an optical microscope. Focusing and magnification through PS micro-lenses is analyzed to get a quantitative estimate of the particle number density in the solution. This method offers a promising low-cost high throughput solution for determining the approximate number density of flowing particles or suitably stained biological cells. Particularly in a pathology lab it can tremendously increase detection limit by enabling visibility of sub-micrometer pathogens using a standard laboratory microscope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.