Abstract

Abstract Solar jets are ubiquitous phenomena in the solar atmosphere. They are important in mass and energy transport to the upper atmosphere and interplanetary space. Here, we report a detailed analysis of a small-scale chromospheric jet with high-resolution He i 10830 Å and TiO 7057 Å images observed by the 1.6 m aperture Goode Solar Telescope at the Big Bear Solar Observatory. The observation reveals the finest dark threads inside the jet are rooted in the intergranular lanes. Their width is equal to the telescope’s diffraction limit at 10830 Å (∼100 km). The jet is recurrent and its association with the emergence and convergence of magnetic flux is observed. Together with other important features like photospheric flow toward the magnetic polarity inversion line, a bald-patch magnetic configuration, and earlier excitation of helium atoms, we propose that the jet might be initiated by magnetic reconnection in a U-shaped loop configuration. The plasmoid configuration results from the possible buoyancy of the magnetic reconnection, which reoccurs in a second step with an overlying magnetic field line. Notably, the second-step magnetic reconnection produces not only bidirectional cool or hot flows but also a new U-shaped loop configuration. The feature may be used to explain the recurrent behavior of the jet, since the new U-shaped loop can be driven to reconnect again.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.