Abstract

Greenspace, offering multifaceted ecological and socioeconomic benefits to the nature system and human society, is integral to the 11th Sustainable Development Goal pertaining to cities and communities. Spatially and temporally explicit information on greenspace is a premise to gauge the balance between its supply and demand. However, existing efforts on urban greenspace mapping primarily focus on specific time points or baseline years without well considering seasonal fluctuations, which obscures our knowledge of greenspace’s spatiotemporal dynamics in urban settings. Here, we combined spectral unmixing approach, time-series phenology modeling, and Sentinel-2 satellite images with a 10-m resolution and nearly 5-day revisit cycle to generate a four-year (2019–2022) 10-m and 10-day resolution greenspace dynamic data cube over 1028 global major cities (with an urbanized area >100 km2). This data cube can effectively capture greenspace seasonal dynamics across greenspace types, cities, and climate zones. It also can reflect the spatiotemporal dynamics of the cooling effect of greenspace with Landsat land surface temperature data. The developed data cube provides informative data support to investigate the spatiotemporal interactions between greenspace and human society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.