Abstract

Abstract The complex orography of the Canary Islands favors the creation of microclimates, which cannot be studied using global climate models or regional models with moderate resolution. In this work, WRF is used to perform a dynamic climate regionalization in the archipelago, using the pseudo–global warming technique to compute the initial and boundary conditions from a reanalysis dataset and from results of 14 global climate models. The simulations were performed for three decades, one at present (1995–2004) and two in the future (2045–54 and 2090–99), and for two different greenhouse gas scenarios (RCP4.5 and RCP8.5), defined in phase 5 of the Coupled Model Intercomparison Project. The obtained results, at a 5-km horizontal resolution, show a clear dependence of temperature increase with height and a positive change in diurnal temperature range, which is mainly due to a reduction in soil moisture and a slight decrease in cloud cover. This negative change in soil moisture is mainly a consequence of a decrease in precipitation, although the evaluation of simulated reduction in precipitation does not show statistical significance in most of the Canary Islands for the analyzed periods and scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call