Abstract

Abstract. Northern Italy is frequently affected by severe precipitation conditions often inducing flood events with associated loss of properties, damages and casualties. The capability of correctly forecast these events, strongly required for an efficient support to civil protection actions, is still nowadays a challenge. This difficulty is also related with the complex structure of the precipitation field in the Alpine area and, more generally, over the Italian territory. Recently a new generation of non-hydrostatic meteorological models, suitable to be used at very high spatial resolution, has been developed. In this paper the performance of the non-hydrostatic Lokal Modell developed by the COSMO Consortium, is analysed with regard to a couple of intense precipitation events occurred in the Piemonte region in Northern Italy. These events were selected among the reference cases of the Hydroptimet/INTERREG IIIB project. LM run at the operational resolution of 7km provides a good forecast of the general rain structure, with an unsatisfactory representation of the precipitation distribution across the mountain ranges. It is shown that the inclusion of the new prognostic equations for cloud ice, rain and snow produces a remarkable improvement, reducing the precipitation in the upwind side and extending the intense rainfall area to the downwind side. The unrealistic maxima are decreased towards observed values. The use of very high horizontal resolution (2.8 km) improves the general shape of the precipitation field in the flat area of the Piemonte region but, keeping active the moist convection scheme, sparse and more intense rainfall peaks are produced. When convective precipitation is not parametrised but explicitly represented by the model, this negative effect is removed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.