Abstract
Here we report a high-resolution fluorescence in situ hybridization (FISH) analysis of the integrated Epstein-Barr virus (EBV) genome in chromosomes, decondensed interphase nuclear chromatin, and linearly extended chromatin fibers. We analyzed the EBV DNA integrated into the human genome in the well-characterized Burkitt's lymphoma cell line Namalwa, which contains two complete EBV genomes. The integration occurs via the terminal repeats of the virus and was always detectable at chromosome band 1p35. Using the biotinylated BamHIW fragment of the viral DNA, we observed distinct pairs of signals or small nuclear RNA "tracks" within interphase nuclei. FISH to stretched DNA fibers has a higher resolving power and; therefore, enables analysis of the structural organization of DNA. Application of this methodology to linearly extended chromatin of Namalwa cells using different EBV fragments allowed us to visualize the ordered arrangement of the integrated virus. Based on the predicted span of 0.34 nm per base pair for relaxed DNA, length measurements of 30 images showed a good correlation between the mean physical length of hybridized EBV DNA of 52.8 microns (158 kb) without the terminal repeats, and the EBV genomic length of 172 kb, including the terminal repeats. This DNA mapping procedure represents a useful tool for studying the structural organization of integrated viral genomes, and its application will have implications for the understanding of integration processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.