Abstract

Film cooling adiabatic effectiveness for axial and compound angle holes on the suction side of a simulated turbine vane was investigated to determine the relative performance of these configurations. The effect of the surface curvature was also evaluated by comparing to previous curvature studies and flat plate film cooling results. Experiments were conducted for varying coolant density ratio, mainstream turbulence levels, and hole spacing. Results from these measurements showed that for mild curvature, 2r∕d≈160, flat plate results are sufficient to predict the cooling effectiveness. Furthermore, the compound angle injection improves adiabatic effectiveness for higher blowing ratios, similar to previous studies using flat plate facilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.