Abstract

Light field (LF) images offer abundant spatial and angular information, therefore, the combination of which is beneficial in the performance of LF image superresolution (LF image SR). Currently, existing methods often decompose the 4D LF data into low-dimensional subspaces for individual feature extraction and fusion for LF image SR. However, the performance of these methods is restricted because of lacking effective correlations between subspaces and missing out on crucial complementary information for capturing rich texture details. To address this, we propose a cross-subspace fusion network for LF spatial SR (i.e., CSFNet). Specifically, we design the progressive cross-subspace fusion module (PCSFM), which can progressively establish cross-subspace correlations based on a cross-attention mechanism to comprehensively enrich LF information. Additionally, we propose a high-resolution adaptive enhancement group (HR-AEG), which preserves the texture and edge details in the high resolution feature domain by employing a multibranch enhancement method and an adaptive weight strategy. The experimental results demonstrate that our approach achieves highly competitive performance on multiple LF datasets compared to state-of-the-art (SOTA) methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.