Abstract

Xenon fluoride radicals were generated by solid-state chemical reactions of mobile fluorine atoms with xenon atoms trapped in Ar matrix. Highly resolved electron spin resonance spectra of XeF* were obtained in the temperature range of 5-25 K and the anisotropic hyperfine parameters were determined for magnetic nuclei 19F, 129Xe, and 131Xe using naturally occurring and isotopically enriched xenon. Signs of parallel and perpendicular hyperfine components were established from analysis of temperature changes in the spectra and from numerical solutions of the spin Hamiltonian for two nonequivalent magnetic nuclei. Thus, the complete set of components of hyperfine- and g-factor tensors of XeF* were obtained: 19F (Aiso=435, Adip=1249 MHz) and 129Xe (Aiso=-1340, Adip=-485 MHz); g(parallel)=1.9822 and g(perpendicular)=2.0570. Comparison of the measured hyperfine parameters with those predicted by density-functional theory (DFT) calculations indicates, that relativistic DFT gives true electron spin distribution in the 2Sigma+ ground-state, whereas nonrelativistic theory underestimates dramatically the electron-nuclear contact Fermi interaction (Aiso) on the Xe atom. Analysis of the obtained magnetic-dipole interaction constants (Adip) shows that fluorine 2p and xenon 5p atomic orbitals make a major contribution to the spin density distribution in XeF*. Both relativistic and nonrelativistic calculations give close magnetic-dipole interaction constants, which are in agreement with the measured values. The other relativistic feature is considerable anisotropy of g-tensor, which results from spin-orbit interaction. The orbital contribution appears due to mixing of the ionic 2Pi states with the 2Sigma+ ground state, and the spin-orbit interaction plays a significant role in the chemical bonding of XeF*.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.