Abstract

This study presents the results of high-resolution dynamical downscaling of 5 km on maximum (TX) and minimum (TN) air temperature and precipitation, for Greece, with the Weather Research and Forecasting (WRF) model. The ERA-Interim (ERA-I) reanalysis dataset is used for initial and boundary conditions. The model results (WRF_5) are evaluated against available ground observations for the period 1980–2004 through the calculation of mean climatology, statistical metrics, and distributions of extreme events on daily, monthly and seasonal scales. WRF_5 model captures very well the geographical distribution of TX and TN of the study area, and illustrates finely the seasonal differences. Statistical results for TX (TN) indicate a cold (warm) bias of − 0.6 °C (1 °C) regarding WRF_5 and − 3 °C (0.5 °C) for ERA-I. The efficiency metrics for temperatures showed a highly improved performance of the model compared to reanalysis for all temporal scales investigated. The observed mean annual cycle and inter-annual variability of precipitation are also well represented by model simulation. Although WRF_5 overestimates rainfall during most of the year, the seasonal pattern of WRF_5 presented similar correlation coefficients for all stations with a range of 0.6–0.85, showing a good model ability to simulate the precipitation in Greece. The results reveal the capability of the configured WRF high resolution model to reproduce the main climatological variables of the study area, outperforming the coarse resolution ERA-Interim in a region that is dominated by highly variable topographic characteristics. This is deemed necessary for undertaking any further studies concerning future climate change impacts in various sectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call