Abstract
Surface waves are widely used in near-surface geophysics and provide a noninvasive way to determine near-surface structures. By extracting and inverting dispersion curves to obtain local 1D S-wave velocity profiles, multichannel analysis of surface waves (MASW) has been proven as an efficient way to analyze shallow-seismic surface waves. By directly inverting the observed waveforms, full-waveform inversion (FWI) provides another feasible way to use surface waves in reconstructing near-surface structures. This paper provides a state of the art review of MASW and shallow-seismic FWI and a comparison of both methods. A two-parameter numerical test is performed to analyze the nonlinearity of MASW and FWI, including the classical, the multiscale, the envelope-based, and the amplitude-spectrum-based FWI approaches. A checkerboard model is used to compare the resolution of MASW and FWI. These numerical examples show that classical FWI has the highest nonlinearity and resolution among these methods, while MASW has the lowest nonlinearity and resolution. The modified FWI approaches have an intermediate nonlinearity and resolution between classical FWI and MASW. These features suggest that a sequential application of MASW and FWI could provide an efficient hierarchical way to delineate near-surface structures. We apply the sequential-inversion strategy to two field data sets acquired in Olathe, Kansas, USA, and Rheinstetten, Germany, respectively. We build a 1D initial model by using MASW and then apply the multiscale FWI to the data. High-resolution 2D S-wave velocity images are obtained in both cases, whose reliabilities are proven by borehole data and a GPR profile, respectively. It demonstrates the effectiveness of combining MASW and FWI for high-resolution imaging of near-surface structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.