Abstract

Using a high quality cadmium telluride (CdTe) wafer, we formed a Schottky junction and operated the detector as a diode (CdTe diode). The low leakage current of the CdTe diode allows us to apply a much higher bias voltage than was possible with the previous CdTe detectors. For a relatively thin detector of /spl sim/0.5 mm thick, the high bias voltage results in a high electric field in the device. Both the improved charge collection efficiency and the low-leakage current lead to an energy resolution of 1.1 keV FWHM at 60 keV for a 2/spl times/2 mm/sup 2/ device and 2 keV for a 10/spl times/10 mm/sup 2/ device at 5/spl deg/C without any charge-loss correction electronics. For astrophysical applications, we have developed a an initial prototype CdTe pixel detector based on the CdTe diode. The detector has 400 pixels with a pixel size of 625/spl times/625 /spl mu/m/sup 2/. Each pixel is gold-stud bonded to a fanout board and routed to a front end ASIC to measure pulse height information for each /spl gamma/-ray photon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.