Abstract

Brachiopod shells are ubiquitous since the Early Cambrian up to now. As they secrete a shell made of low-magnesium calcite, more resistant to diagenesis than biocarbonates richer in Mg, their geochemical signatures are generally considered a powerful tool for paleo-environmental and paleo-climatic reconstructions. However, gaps in knowledge still remain on the underlying controls of the shell chemistry, in particular at a high spatial resolution. In this study, in situ oxygen and carbon isotope measurements by SIMS (Secondary Ion Mass Spectrometry) were performed in brachiopod shells of the cold-temperate water species Magellania venosa, constituted of a primary and a secondary layer. The individual specimens studied here grew under controlled conditions mimicking the natural environment and in experiments under low-pH (high pCO2) and high-temperature conditions. Transversal carbon and oxygen profiles showed a “brachiopod pattern” typical of extant two-layered brachiopods, with the primary layer depleted in 18O and 13C relative to equilibrium and the secondary layer showing a gradual increasing trend until reaching a near-equilibrium plateau. Overall, shells cultured at low pH were found to have δ18O and δ13C values closer to equilibrium when compared to shells from the control experiment. These near-equilibrium values may reflect a decrease in shell precipitation rate, leading to less kinetic effects, and/or a more rapid kinetics for the equilibration between DIC species and water. By close pairing of seawater δ18O and δ13C to that of shell microstructure, our study enables us to derive layer-specific C and O enrichment factors, which show the extent of pH and temperature effects superimposed on the seawater δ18O and DIC δ13C signal inherited. Finally, we show that during brachiopod shell growth, newly precipitated calcite is added to the calcite already existing, thus empirically validating the conceptual accretionary growth model proposed by Ackerly (1989).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.