Abstract

We demonstrate that differential scanning calorimetry (DSC) can be used to yield high-resolution melting profiles for DNA plasmids that agree in all major features with the corresponding plasmid melting profiles derived using more traditional optical techniques. We further demonstrate that by combining information derived from both calorimetric and optical melting profiles one can glean insights that are unavailable from either melting curve alone. By using both optical and calorimetric observables, we show how one can resolve, identify, and measure the thermodynamic properties of particular sequences/domains of interest within a plasmid. We also show that complementary DSC and optical melting studies on plasmids with and without specifically designed inserts can provide fundamental advantages over the corresponding melting studies on other model system constructs for thermodynamically characterizing nucleic acid sequences/structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.