Abstract

AbstractDetailed maps of bed elevation and ice thickness are essential for understanding and projecting the evolution of the ice sheets. Such maps are traditionally obtained using airborne radar-sounding profiler data interpolated onto regular grids using geostatistical tools such as kriging. Here we compare three mapping techniques applied to a dense radar survey of Russell Glacier, West Greenland, by NASA Operation IceBridge: (1) radar tomography (RT) processing of the radar data to map the bed elevation, (2) interpolation of radar-derived thickness by ordinary kriging (KR) and (3) reconstruction of ice thickness based on the principles of mass conservation (MC) combining radar-sounding profiler and ice motion data. RT eliminates ambiguities caused by off-nadir reflections, but is spatially limited. KR yields a standard error in bed elevation of 35 m, but large errors (>300 m a−1) in flux divergence when combined with ice motion data. MC yields a comparable performance in bed elevation mapping, and errors smaller than 1 m a−1 in flux divergence. When the number of radar-sounding tracks is reduced, the performance of KR decreases more rapidly than for MC. Our study site shows that MC is capable of maintaining precision levels of 60 m at 400 m posting with flight tracks separated by 5 km.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.