Abstract

Under the rapidly warming climate in the Arctic and high mountain areas, permafrost is thawing, leading to various hazards at a global scale. One common permafrost hazard termed retrogressive thaw slump (RTS) occurs extensively in ice-rich permafrost areas. Understanding the spatial and temporal distributive features of RTSs in a changing climate is crucial to assessing the damage to infrastructure and decision-making. To this end, we used a machine learning-based model to investigate the environmental factors that could lead to RTS occurrence and create a susceptibility map for RTS along the Qinghai-Tibet Engineering Corridor (QTEC) at a local scale. The results indicate that extreme summer climate events (e.g., maximum air temperature and rainfall) contributes the most to the RTS occurrence over the flat areas with fine-grained soils. The model predicts that 13% (ca. 22,948 km2) of the QTEC falls into high to very high susceptibility categories under the current climate over the permafrost areas with mean annual ground temperature at 10 m depth ranging from −3 to −1 °C. This study provides insights into the impacts of permafrost thaw on the stability of landscape, carbon stock, and infrastructure, and the results are of value for engineering planning and maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call