Abstract

Antibody array analysis of labeled proteomes has high throughput and is simple to perform, but validation remains challenging. Here, we used differential detergent fractionation and size exclusion chromatography in sequence for high-resolution separation of biotinylated proteins from human primary keratinocytes and leukocytes. Ninety-six sample fractions from each cell type were analyzed with microsphere-based antibody arrays and flow cytometry (microsphere affinity proteomics; MAP). Monomeric proteins and multi-molecular complexes in the cytosol, cytoplasmic organelles, membranes and nuclei were resolved as discrete peaks of antibody reactivity across the fractions. The fractionation also provided a two-dimensional matrix for assessment of specificity. Thus, antibody reactivity peaks were considered to represent specific binding if the position in the matrix was in agreement with published information about i) subcellular location, ii) size of the intended target, and iii) cell type-dependent variation in protein expression. Similarities in the reactivity patterns of either different antibodies to the same protein or antibodies to similar proteins were used as additional supporting evidence. This approach provided validation of several hundred proteins and identification of monomeric proteins and protein complexes. High-resolution MAP solves many of the problems associated with obtaining specificity with immobilized antibodies and a protein label. Thus, laboratories with access to chromatography and flow cytometry can perform large-scale protein analysis on a daily basis. This opens new possibilities for cell biology research in dermatology and validation of antibodies.

Highlights

  • ObjectivesThe aim of the present study was to obtain better control of specificity in microsphere affinity proteomics (MAP)

  • The assay format provides information about the amount of protein bound by the capture antibodies, but there is no intrinsic control of specificity

  • Assay precision is limited only by the resolution of the separation method and the ability to discriminate targets that correspond to specific binding and cross-reactivity, respectively

Read more

Summary

Objectives

The aim of the present study was to obtain better control of specificity in MAP. In an earlier study by our group, SEC was combined with a crude method to separate soluble proteins from those tightly bound to membranes and chromatin [6]. We aimed to obtain more precise information about subcellular location

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.