Abstract

A cylindrical probe with almost perfectly flat plateaulike surface was focused ion beam (FIB) milled from an atomic force microscopy probe in order to create the required surface conditions for thin film deposition with finely controlled deposition/growth parameters. A composition of Pd(5 nm)/MgO(8 nm)/FePt(10 nm)/MgO(8 nm) was sputter deposited on the plateau probe, followed by deposition of a Pd (5 nm) protective layer. The plateau probe was then FIB-milled to produce a tip with a curvature radius of ∼25 nm. After annealing the probe at 650 °C for ∼15 min to generate an ultrahigh anisotropy L10 phase, magnetic force microscopy (MFM) imaging was performed with the probe on magnetic tracks with linear densities ranging from 200 to 1200 KFCI. The results show sub-20-nm lateral resolution in ambient conditions and magnetic tracks, which are otherwise invisible to standard MFM probes, are clearly evident with the FIB-fabricated FePt probe. With relatively high spatial resolution and coercivity values higher than 1 T, among other applications, this type of probe may be ideal for high-quality MFM study of next-generation recording media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.