Abstract
Photoacoustic endomicroscopy (PAEM) is capable of imaging fine structures in digestive tract. However, conventional PAEM employs a tightly focused laser beam to irradiate the object, which results in a limited depth-of-field (DOF). Here, we propose a scanning-domain synthesis of optical beams (SDSOB) to optimize both transverse resolution and the DOF by synthetic effective focused beams in scanning domain for the PAEM. By utilizing the SDSOB technique, multiple defocused and scattered beams are refocused to synthesize virtual focuses covering a large range of depth. A transverse point spread function that is 5.7-time sharper, and a transverse spatial bandwidth that is 8.5-time broader than those of the conventional PAEM were simulatively obtained through SDSOB-PAEM at the defocus distance of 2.4 mm. We validated the transverse resolution improvement at both in- and out-focus positions via phantom experiments of carbon fibers. In addition, in vivo rabbit experiments were conducted to acquire vascular images over radial depth range of 900 µm. And further morphological analysis revealed that the SDSOB images were acquired with abundant vascular branches and nodes, large total-length and small average-length of blood vessels, which indicated that the SDSOB-PAEM achieved high-resolution imaging in distinct rectal layers. All these results suggest that the SDSOB-PAEM possesses high transverse resolution and extended DOF, which demonstrates the SDSOB-PAEM can provide more accurate information for clinical assessment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.