Abstract

Airborne measurements of ocean skin temperature T/sub s/ are presented from the Coupled Boundary Layers, Air-Sea Transfer in Low Winds (CBLAST-Low) Pilot Experiment in August 2001 off Martha's Vineyard, MA. We used an infrared (IR) camera with a spatial resolution of 1 m or less and temperature resolution of roughly 0.02/spl deg/C. Using subframe sampling of the IR imagery, we achieve lower noise and higher spatial resolution than reported by previous investigators using IR radiometers. Fine-scale maps of T/sub s/ exhibit horizontal variability over spatial scales ranging from O(10 km) down to O(1 m) that are related to atmospheric and subsurface phenomena under low to moderate wind conditions. Based on supporting measurements of wind and waves, we identify coherent ramp-like structures in T/sub s/ with stratification breakdown and meandering streaky features with internal waves. Regional maps of T/sub s/ show the standard deviation for the region is /spl plusmn/1.04/spl deg/C, while the meridional and zonal variability is 0.23/spl deg/C /spl middot/ km/sup -1/ and 0.27/spl deg/C /spl middot/ km/sup -1/, respectively. This temperature variability results in meridional and zonal scalar heat flux variability of 7.0 W /spl middot/ m/sup -2/ /spl middot/ km/sup -1/ and 7.6 W /spl middot/ m/sup -2/ /spl middot/ km/sup -1/, respectively. Our results demonstrate the potential for airborne IR imagery accompanied by high-quality ocean data to identify T/sub s/ features produced by subsurface circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call