Abstract
Defect inspection of braided carbon fiber reinforced polymer (CFRP) is very difficult due to its nonhomogeneity, anisotropy, and sensitivity to coupling agents. This paper presents a hybrid system for detecting microstructure and defects in braided CFRP that combines the advantages of laser-ultrasound and air-coupled ultrasonic testing. Through the finite element method, the ultrasonic field propagating on the braided CFRP was simulated during the laser-induced ultrasound, and the influences of laser parameters and surface braided structure were analyzed on the laser ultrasonic signal. This detection method based on air-coupled laser ultrasound can provide the near-surface microstructure characterization of the resin pockets and braided fiber bundles, and also can achieve both shallow and deep defect detection of CFRP sheets which is comparable to that of the contact-type high-frequency phased array with higher contrast and less distortion. These results indicate that it has the potential to develop a non-contact, high-resolution, and low-cost method for the detection and repairment of advanced composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.