Abstract
Additive manufacturing technology is an emerging method for rapid prototyping, which enables the creation of complex geometries by one-step fabrication processes through a layer-by-layer approach. The simplified fabrication achieved with this methodology opens the way towards a more efficient industrial production, with applications in a great number of fields such as biomedical devices. In biomedicine, blood is the gold-standard biofluid for clinical analysis. However, blood cells generate analytical interferences in many test procedures; hence, it is important to separate plasma from blood cells before analytical testing of blood samples. In this research, a custom-made resin formulation combined with a high-resolution 3D printing methodology were used to achieve a methodology for the fast prototype optimization of an operative plasma separation modular device. Through an iterative process, 17 different prototypes were designed and fabricated with printing times ranging from 5 to 12 min. The final device was evaluated through colorimetric analysis, validating this fabrication approach for the qualitative assessment of plasma separation from whole blood. The 3D printing method used here demonstrates the great contribution that this microfluidic technology will bring to the plasma separation biomedical devices market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.