Abstract

Three-dimensional (3D) laser nanoprinting with high resolution and low cost is highly desirable for fabricating arbitrary 3D structures with fine feature size. In this work, we use a 405-nm integrated fiber-coupled continuous wave (cw) laser diode to establish an easy-to-build 3D nanoprinting system based on two-step absorption. Two-dimensional (2D) gratings with a sub-150-nm period and 3D woodpile nanostructures with a lateral period of 350 nm have been printed at a low speed. At a faster scan velocity of 1000 µm/s, 2D gratings with sub-200-nm resolution and sub-50-nm linewidth can still be fabricated with laser power less than 1 mW. The two-step absorption of the used benzil initiator enables us to use a second cw laser with 532-nm wavelength to enhance the polymerization with sub-100-nm feature size when starting with insufficient 405-nm laser power, which possess the potential to find applications in high-speed high-resolution parallel-writing and in situ manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.