Abstract

This study demonstrates the usefulness derived from relying on hyperpolarized water obtained by dissolution DNP, for site-resolved biophysical NMR studies of intrinsically disordered proteins. Thanks to the facile amide-solvent exchange experienced by protons in these proteins, 2D NMR experiments that like HMQC rely on the polarization of the amide protons, can be enhanced using hyperpolarized water by several orders of magnitude over their conventional counterparts. Optimizations of the DNP procedure and of the subsequent injection into the protein sample are necessary to achieve these gains while preserving state-of-the-art resolution; procedures enabling this transfer of the hyperpolarized water and the achievement of foamless hyperpolarized protein solutions are demonstrated. These protocols are employed to collect 2D 15N-1H HMQC NMR spectra of α-synuclein, showing residue-specific enhancements ≥100× over their thermal counterparts. These enhancements, however, vary considerably throughout the residues. The biophysics underlying this residue-specific behavior upon injection of hyperpolarized water is theoretically examined, the information that it carries is compared with results arising from alternative methods, and its overall potential is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.