Abstract

High-resolution magic angle spinning (MAS) (1)H NMR spectra of small samples (ca. 8 mg) of intact rat liver are reported for the first time. One dimensional spectra reveal a number of large well-resolved NMR signals mainly from low to medium molecular weight compounds (generally <1000 Daltons) from a variety of chemical classes. A range of 2D MAS-NMR experiments were performed, including (1)H J-resolved (JRES), (1)H-(1)H total correlation spectroscopy (TOCSY) and (1)H-(13)C heteronuclear multiple quantum coherence (HMQC) to enable detailed signal assignment. Resonances were assigned from alpha- and beta-glucose, glycerol, alanine, glutamate, glycine, dimethylglycine, lysine, and threonine, together with phosphocholine, choline, lactate, trimethylamine-N-oxide (TMAO), and certain fatty acids. Well-resolved (1)H NMR signals from glycogen (poly 1-4 alpha-glucose) were observed directly in intact liver using MAS-NMR spectroscopy. In addition, the resonances from the glycogen C(1)H proton in alpha(1-->4) linked glucose units with either alpha(1-->4) units adjacent or alpha(1-->6) linked branches could be resolved in a high-resolution (1)H NMR experiment giving direct in situ information on the ratio of alpha(1-->4) to alpha(1-->6) units. This indicates that despite the relatively high MW (>1,000,000 Daltons) there is considerable segmental motion in the glycogen molecules giving long (1)H T(2) relaxation times. Magn Reson Med 44:201-207, 2000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.