Abstract

Bulk heterojunction organic solar cells have been fabricated by inserting a high-resistivity sol-gel ITO buffer layer between an ITO anode and a PEDOT:PSS hole injection layer. The performance of the devices with the sol-gel ITO atop the ITO anodes treated by conventional annealing at 500 °C for 1 h and rapid thermal process (RTP) at 800 °C for 20 and 30 s was compared. The best power conversion efficiency of 3.5% was achieved for the device with the 15-nm-thick sol-gel ITO treated with RTP at 800 °C for 30 s, as compared with 2.7% of the standard device under an illumination of AM 1.5. In addition, the short circuit current of the device was significantly increased by 42.7%. The observed enhancement of the short circuit current can be attributed an interfacial energy step created by the high-resistivity sol-gel ITO between the ITO anode and the PEDOT:PSS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call