Abstract
Superconductors, an essential class of functional materials, hold a vital position in both fundamental science and practical applications. However, most superconductors, including MgB2, Bi2Sr2CaCu2O8+δ, and FeSe, are highly sensitive to environmental attacks (such as from water and moist air), hindering their wide applications. More importantly, the surface physical and chemical processes of most superconductors in various environments remain poorly understood. Here, we comprehensively investigate the high resistance of superconducting titanium nitride (TiN) epitaxial films against acid and alkali attacks. Unexpectedly, despite immersion in acid and alkaline solutions for over 7 days, the crystal structure and superconducting properties of TiN films remain stable, as demonstrated by high-resolution X-ray diffraction, electrical transport, atomic force microscopy, and scanning electron microscopy. Furthermore, combining scanning transmission electron microscopy analysis with density functional theory calculations revealed the corrosion mechanisms: acid corrosions lead to the creation of numerous defects due to the substitution of Cl ions for N anions, whereas alkaline environments significantly reduce the film thickness through the stabilization of OH* adsorbates. Our results uncover the unexpected stability and durability of superconducting materials against environmental attacks, highlighting their potential for enhanced reliability and longevity in diverse applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.