Abstract

In this Letter, a fiber laser that exploits the dissipative Faraday instability as a pulse-generating mechanism is presented, and its dynamics are studied numerically. The proposed laser operates in the all-normal-dispersion regime and produces a train of quasi-parabolic pulses, with a repetition rate that can be controlled depending on the cavity dispersion and nonlinearity, ranging from 10 to 50GHz. It exploits a lumped amplification scheme, which can be potentially realized with rare-earth gain media. The issues concerning the stability of the pulses are discussed, and the differences with similar pulsed lasers are highlighted. In particular, the transition from the ordered multi-pulse regime proposed here to the random pulse operation mode already studied in the literature is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call