Abstract

A theoretical and experimental investigation is conducted on a high repetition-rate side-pumped burst-mode Nd:YAG laser. The absorbed pumping power distribution and laser resonator are meticulously optimized to enlarge the area of the fundamental mode and improve thermal stability. With the 1 ms pumping duration and a pumping frequency of 10 Hz, the pulsed laser’s burst energy, peak power, and pulse width achieve 0.29 J, 347 kW, and 16 ns, respectively, with the Q-switched repetition rate of 50 kHz. The minimum coefficient of variation for the laser pulse train remains below 5 %. This study represents the first demonstration of a long-term reliable output from a high-energy, nanosecond-pulsed, side-pumped Nd:YAG burst laser operating at 50 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.