Abstract

An actively mode-locked fiber laser with controllable pulse repetition rate and tunable pulse duration is presented, in which an optical delay line (ODL) is used to adjust the cavity length precisely for regulating the repetition rate, and a semiconductor optical amplifier (SOA) is introduced for enabling the pulse duration control. Experimentally, continuous tuning of the repetition rate from 2 GHz to 6 GHz is realized, which is limited by the availability of an even higher repetition rate radio-frequency (RF) source. Specifically, when the repetition rate is fixed at 2.5 GHz, the pulse duration can be tuned from 4 ps to 30 ps, which is, to the best of our knowledge, the widest tuning range of pulse duration ever achieved in a gigahertz (GHz) repetition rate actively mode-locked 1.5 µm fiber laser oscillator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.