Abstract

In the current work, a mixed solder powder BiAgX solder paste system with the melting temperature above 260°C and the comparable or even better reliability to the high lead solders has been studied. The mixed solder powder paste system is composed of a high melting first alloy solder powder as majority and the additive solder powder as minority. The additive solder is designed to react aggressively with various surface finish materials before or together with the melting of the majority solder to form a controllable IMC layer. The IMC layer of the mixed powder system is controllable by the species and the quantity of the additive solder and it is observed to be insensitive to thermal aging and thermal cycling in current tests while the high lead ones do show a considerable increase in IMC layer thickness. Microstructure investigation shows the fishbone shape IMC layer interlocks the bonding interface between solder and components. Both micron-sized and nano-sized Ag-rich precipitations in the joints have been observed to be well distributed in the joint. The exposed Ag-rich particles and the surrounding stepwise pattern in Bi matrix on the fracture surface indicate that these Ag-rich particles constrain the dislocation movement in Bi matrix thus enhance the strength and the ductility of the joint. Under thermal aging and thermal cycling, both the micron-sized and nano-sized Ag-rich precipitations exhibit only discernible and localized coarsening. The stable interfacial IMC together with the existence of the well dispersed Ag-rich particles are attributed to the promising reliability in BiAgX solder paste system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.