Abstract

BackgroundCervical spondylotic myelopathy (CSM) is a critical condition that results in significant neurologic deterioration. An accurate diagnosis is essential for determining its outcome and prognosis. The pathology is strongly associated with dynamic factors; therefore, dynamic magnetic resonance (MR) image could be crucial to accurately detect CSM. However, very few studies have evaluated the reliability and accuracy of dynamic MR in CSM. In this study, we aimed to compare intra- and interobserver reliabilities and accuracy of dynamic MR in detecting CSM using sagittal MR scans of the neck in the flexed, neutral, and extended position.MethodsOut of 131 patients who underwent surgical treatments for CSM, 107 were enrolled in this study. The patient underwent three-types of sagittal MR scans that were obtained separately in different neck positions (neutral, flexion, and extension postures). The MR scans of the cervical spine were evaluated independently by three spine professionals, on the basis of tabled questionnaires. For accuracy, we performed a receiver operator characteristic analysis, and the overall discriminating ability of each method was measured by calculating the area under the ROC curve. The Cohen’s kappa coefficient and the Fleiss-generalized kappa coefficient was used to the inter- and intra-observer reliabilities.ResultsThe intraobserver reliability (using the Cohen’s kappa coefficient) and interobserver reliability (using the Fless kappa coefficient) were respectively 0.64 and 0.52 for the neutral sagittal MR. The accuracy of neutral sagittal MR in detecting CSM was 0.735 (95% CI, 0.720 to 0.741) while that of extension sagittal MRI was 0.932 (96% CI, 0.921 to 0.948).ConclusionsDynamic MR significantly showed better diagnostic reliability and accuracy in detecting CSM compared to conventional MR. In particular, extension MR scans could provide a more accurate diagnosis than other images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.