Abstract

Hundreds of millions of tons of food resources are wasted annually due to microbial contamination. Effective food packaging can prevent food contamination and wastage. However, traditional food packaging has the problem of low release of bioactive substances. This study aimed to prepare a pH-responsive polysaccharide hydrogel (GDPP) by double cross-linking of ester and hydrogen bonds that could result in a high release of bioactive substances and no residual peeling. The infrared results showed the existence of ester bonds in the hydrogel, and the scanning electron microscopy results showed the porous network structure of the hydrogel. The results of texture profile analysis and self-healing tests showed that GDPP-1 has good mechanical and self-healing properties. Moreover, the ester bond of the hydrogel broke in response to the pH in the environment, improving the swelling and release properties of the hydrogel. The equilibrium swelling ratio of GDPP-1 was greater than 1000%, and the release rate of bioactive substances was more than 80%. Notably, the results of peeling experiments showed that only 0.1 N external force was needed to separate the hydrogel from the salmon, and no residue was observed on the salmon surface. The final freshness test results showed that the hydrogel effectively prolonged the shelf life of refrigerated salmon for 3-6 days. These findings indicated that hydrogels could be used in food packaging to extend the shelf life of refrigerated food. Furthermore, their advantages of low cost and simple preparation can better meet the needs of food industry applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.