Abstract

Terahertz (THz) time-domain spectroscopy was used to study the optical properties of two series of oxyfluorosilicate (OFS) glasses. The experimentally measured refractive indices are analyzed by using the Clausius–Mossotti equation to retrieve information about polarizability of the glass. Compared with previously studied oxide-based glasses and chalcogenides, OFS glasses exhibit a balance of relatively low absorption coefficients (6–9 cm−1) and high refractive indices (2.9–3.7) at 0.5 THz. The value of 3.7 is the highest among silicate glasses reported to date and are comparable to those of La3+:chalcogenide glasses. The relatively high values of refractive indices have been attributed to the great increase of the glass polarizability in OFS glasses, which offsets the effect of an increase in molecular volume caused by multicomponent modification of the glass structure. Comparatively low THz absorption of OFS glasses is explained by the structural relaxation effect of fluorine, which effectively suppress the charge fluctuation in the glass structure. The high refractive index and low absorption loss properties of the present OFS glasses should be useful for quasi-optic components such as lens and waveguide devices application in the sub-THz and millimeter wave region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.