Abstract

Background: In this study, we aimed to discriminate high reflectivity and low reflectivity macular neovascularization (MNV) lesions secondary to age-related macular degeneration (AMD)and to assess the influence of blood flow features on the amount of MNV detected by optical coherence tomography angiography (OCTA).Methods: The study was designed as observational, cross-sectional. Type 1 and type 2 MNV lesions were included. All the patients underwent fluorescein angiography (FA), indocyanine green angiography (ICGA) and OCTA. MNV size was calculated on early FA for type 2 MNV and on both early and late phases of ICGA for type 1 lesions. From OCTA, we calculated both MNV size and MNV reflectivity. We assessed the agreement between FA/ICGA and OCTA MNV sizes. Moreover, we studied the relationship between MNV reflectivity properties and MNV OCTA detection.Results: Fifty eyes (50 patients) were included. MNV was identified as follows: 35 /70%) type 1 and 15 (30%) type 2. We found a good agreement between early ICGA size and OCTA size for type 1 MNV (2.10 ± 1.91 mm2 vs 2.09 ± 1.87 mm2; p > 0.05), whereas MNV lesions turned out to be remarkably bigger on late ICGA phase (3.41 ± 2.87 mm2; p < 0.01). Interestingly, OCTA well-matched with FA in terms of MNV size for type 2 lesions (2.36 ± 2.15 mm2 vs 2.37 ± 2.25 mm2). MNV reflectivity was higher in type 2 MNV and it was strongly associated with the OCTA ability to reconstruct the neovascular network.Conclusion: Our study quantitatively showed that MNV filling pattern and MNV blood flow reflectivity features influence the OCTA detection of the MNV in its entirety.

Highlights

  • Optical coherence tomography (OCT) angiography (OCTA) has considerably improved and simplified the diagnostic approach to macular neovascularization (MNV) secondary to agerelated macular degeneration (AMD), by revealing with great accuracy the morphology of the neovascular network and its clinical features [1, 2]

  • optical coherence tomography angiography (OCTA) can reveal only a part of the entire MNV lesion, which is detected in its entirety by fluorescein angiography (FA) and indocyanine

  • Whereas type 2 lesions can be often well detected by OCTA, because of the pattern of growth occurring above the retinal pigment epithelium (RPE), type 1 lesions are often challenging to be distinguished in their entirety, because of a growing pattern occurring below the RPE often interfering with the proper blood flow signal detection performed by OCTA [3]

Read more

Summary

Introduction

Optical coherence tomography (OCT) angiography (OCTA) has considerably improved and simplified the diagnostic approach to macular neovascularization (MNV) secondary to agerelated macular degeneration (AMD), by revealing with great accuracy the morphology of the neovascular network and its clinical features [1, 2]. Since the final OCTA output, namely the reconstruction of the intraretinal capillaries, directly depends both on the amount and speed of blood flow interesting the capillary network, in our case the MNV, it may be assumed that the reflectivity intensity of the MNV might be related with these two OCTA features. We aimed to discriminate high reflectivity and low reflectivity macular neovascularization (MNV) lesions secondary to age-related macular degeneration (AMD)and to assess the influence of blood flow features on the amount of MNV detected by optical coherence tomography angiography (OCTA)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call