Abstract
The structure of a sample of high-redshift (z=2), rotating galaxies with high star formation rates and turbulent gas velocities of sigma=40-80 km/s is investigated. Fitting the observed disk rotational velocities and radii with a Mo, Mao, White (1998) (MMW) model requires unusually large disk spin parameters lambda_d>0.1 and disk-to-dark halo mass fraction m_d=0.2, close to the cosmic baryon fraction. The galaxies segregate into dispersion-dominated systems with 1<vmax/sigma<3, maximum rotational velocities vmax<200 km/s and disk half-light radii rd=1-3 kpc and rotation-dominated systems with vmax>200 km/s, vmax/sigma>3 and rd=4-8 kpc. For the dispersion-dominated sample, radial pressure gradients partly compensate the gravitational force, reducing the rotational velocities. Including this pressure effect in the MMW model, dispersion-dominated galaxies can be fitted well with spin parameters lf lambda_d=0.03-0.05 for high disk mass fractions of m_d=0.2 and with lambda_d=0.01-0.03 for m_d=0.05. These values are in good agreement with cosmological expectations. For the rotation-dominated sample however pressure effects are small and better agreement with theoretically expected disk spin parameters can only be achieved if the dark halo mass contribution in the visible disk regime (2-3*rd) is smaller than predicted by the MMW model. We argue that these galaxies can still be embedded in standard cold dark matter halos if the halos did not contract adiabatically in response to disk formation. It is shown that the observed high turbulent gas motions of the galaxies are consistent with a Toomre instability parameter Q=1 which is equal to the critical value, expected for gravitational disk instability to be the major driver of turbulence. The dominant energy source of turbulence is then the potential energy of the gas in the disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.