Abstract

Effective colonization on plant roots is a prerequisite for plant growth promoting rhizobacterias (PGPR) to exert beneficial activities. Light is essential for plant growth, development and stress response. However, how light modulates root colonization of PGPR remains unclear. Here, we found that high red/far red (R/FR) light promoted and low R/FR light inhibited the colonization and growth enhancement of Serratia plymuthica A21-4 (S. plymuthica A21-4) on tomato, respectively. Non-targeted metabolomic analysis of root exudates collected from different R/FR ratio treated tomato seedlings with or without S. plymuthica A21-4 inoculation by UPLC-MS/MS showed that 64 primary metabolites in high R/FR light-grown plants significantly increased compared with those determined for low R/FR light-grown plants. Among them, 7 amino acids, 1 organic acid and 1 sugar obviously induced the chemotaxis and biofilm formation of S. plymuthica A21-4 compared to the control. Furthermore, exogenous addition of five artificial root exudate compontents (leucine, methionine, glutamine, 6-aminocaproic acid and melezitose) regained and further increased the colonization ability and growth promoting ability of S. plymuthica A21-4 on tomato under low R/FR light and high R/FR light, respectively, indicating their involvement in high R/FR light-regulated the interaction of tomato root and S. plymuthica A21-4. Taken together, our results, for the first time, clearly demonstrate that high R/FR light-induced root exudates play a key role in chemotaxis, biofilm formation and root colonization of S. plymuthica A21-4. This study can help promote the combined application of light supplementation and PGPR to facilitate crop growth and health in green agricultural production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.