Abstract

The electrochemical behavior of a lithiated graphite single-particle electrode during high-rate Li deintercalation in an organic electrolyte was investigated using a microelectrode technique. A Ni-plated metal filament (diameter: 10 μm) was attached to a mesocarbon microbead (MCMB) in the electrolyte under optical microscope observation, and galvanostatic charge−discharge tests were carried out. The discharge capacity of a lithiated MCMB particle (diameter: 18 μm) was 2.02 nA h in the potential range of 0.005−2.5 V vs Li/Li+. The fully lithiated MCMB particle showed an extremely high rate capability and released more than 98% of the accommodated Li at a constant discharge current of 1000 nA within 10 s. At discharge currents lower than 200 nA, the charge transfer process at the interface controlled the reaction of the single-particle electrode, and the Li diffusion process in the MCMB particle did not significantly affect the Li deintercalation rate. The charge transfer resistance for Li intercalation/dei...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.