Abstract

Here we employed a facile low temperature molten-salt combustion method combined with two-stage calcination process to synthesize a series of Ni-doped spinel LiNi0.1Mn1.9O4 cathode materials. All the LiNi0.1Mn1.9O4 materials present well-defined cubic spinel structure with a representative Fd3m space group. With the elevated calcination temperature, the particle size and crystallinity increase simultaneously. Benefiting from the optimization of calcination temperature, the LiNi0.1Mn1.9O4 prepared at 600 °C reveals a favorable crystal structure and morphology consisted of homogeneous nanoparticles with a size of 90–110 nm. Consequently, the optimized LiNi0.1Mn1.9O4 cathode exhibits high rate capability and ultralong cycling stability with a discharge specific capacity of 97.1 mAh g−1 and a capacity retention of 63.5% after 1000 cycles at a high current rate of 10 and 25 °C. Even at a high-temperature of 55 °C, a high initial discharge capacity of 106.1 mAh g−1 and a good capacity retention of 79.0% is also obtained after 100 cycles at 5 C. Such an excellent electrochemical performance together with the facile synthesis approach may endow the as-prepared LiNi0.1Mn1.9O4 to be a promising practical application for high-power lithium-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call