Abstract

Biobutanol produced in acetone-butanol-ethanol (ABE) fermentation at batch mode cannot compete with chemically derived butanol because of the low reactor productivity. Continuous fermentation can dramatically enhance productivity and lower capital and operating costs, but are rarely used in industrial fermentation because of increased risks of culture degeneration, cell washout, and contamination. In this study, cells of the asporogenous Clostridium acetobutylicum ATCC55025 were immobilized in a single-passfibrous-bed bioreactor (FBB) for continuous production of butanol from glucose and butyrate at various dilution rates. Butyric acid in the feed medium helped maintaining cells in the solventogenic phase for stable continuous butanol production. At a dilution rate of 1.88 h-1 , butanol was produced at 9.55 g/L, with a yield of 0.24 g/g and productivity of 16.8 g/L/h, which was the highest productivity ever achieved for biobutanol fermentation and an 80-fold improvement over the conventional ABE fermentation. The extremely high productivity was attributed to the high density of viable cells (~100 g/L at >70% viability) immobilized in the fibrous matrix, which also enabled the cells to better tolerate butanol and butyric acid. The FBB was stable for continuous operation for an extended period of over 1 month.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call