Abstract

The charge/discharge properties of V2O5/carbon composites with controlled microstructures were investigated to achieve a high-rate lithium electrode performance. Composite electrodes were synthesized by mixing a V2O5 sol, carbon and a surfactant, followed by drying. V2O5/AB (acetylene black) and V2O5/VGCF (vapor-grown carbon fiber) composite electrodes showed high-rate charge/discharge properties only when they had very high carbon contents. V2O5/ (AB and VGCF) composite electrodes with controlled microstructures exhibited a discharge capacity of 245 mA·h·g-1 at a high current density of 40 A·g-1, which was approximately 70% of that at a low current density of 100 mA·g-1. The improvement in the high-rate charge/discharge properties was attributed to the short lithium ion diffusion distance, large reaction area and high electronic conductivity of those composite electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call