Abstract

The rate capability of various lithium-ion half-cells was investigated. Our study focuses on the performance of the carbon negative electrode, which is composed of TIMREX SFG synthetic graphite material of varying particle size distribution. All cells showed high discharge and comparatively low charge rate capability. Up to the 20 C rate, discharge capacity retention of more than 96% was found for SFG6. The rate capability of the half-cells is a function of both the particle size distribution of the graphite material and the preparation method of the electrode. A transport limitation model is proposed to explain the restrictions of the high current performance of graphite electrodes. The key parameters found to influence the performance of a graphite negative electrode were the loading, the thickness, and the porosity of the electrode. © 2005 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.