Abstract

A facile chemical vapor deposition method is developed for the preparation of carbon nanofiber (CNF) composite Na3 V2 (PO4 )2 F3 @C as cathodes for sodium-ion batteries. In all materials under investigation, the optimized composite content, denoted as NVPF@C@CNF-5, shows excellent sodium storage performance (86.3 % capacity retention over 5000 cycles at 20 C rate) and high rate capability (84.3 mA h g-1 at 50 C). The superior sodium storage performance benefits from the enhanced electrical conductivity of the working electrode after formation of a composite with CNF. Furthermore, the full cell using NVPF@C@CNF-5 and hard carbon as the cathode and anode, respectively, demonstrates an impressive electrochemical performance, realizing an ultrahigh rate charge/discharge at a current rate of 30 C and long-term stability over 1000 cycles. This approach is facile and effective, and could be extended to other materials for energy-storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.