Abstract

Most reported cathode materials for rechargeable aqueous Al metal batteries are based on an intercalative-type chemistry mechanism. Herein, iodine embedded in MOF-derived N-doped microporous carbon polyhedrons (I2 @ZIF-8-C) is proposed to be a conversion-type cathode material for aqueous aluminum-ion batteries based on "water-in-salt" electrolytes. Compared with the conventional Al-I2 battery using ionic liquid electrolyte, the proposed aqueous Al-I2 battery delivers much enhanced electrochemical performance in terms of specific capacity and voltage plateaus. Benefitting from the confined liquid-solid conversion of iodine in hierarchical N-doped microporous carbon polyhedrons and enhanced reaction kinetics of aqueous electrolytes, the I2 @ZIF-8-C electrode delivers high reversibility, superior specific capacity (≈219.8 mAh g-1 at 2 A g-1 ), and high rate performance (≈102.6 mAh g-1 at 8 A g-1 ). The reversible reaction between I2 and I- , with I3 - and I5 - as intermediates, is confirmed via ex situ Raman spectra and X-ray photoelectron spectroscopy. Furthermore, solid-state hydrogel electrolyte is employed to fabricate a flexible Al-I2 battery, which shows performance comparable to batteries using liquid electrolyte and can be integrated to power wearable devices as a reliable energy supply.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.