Abstract
Lithium metal is an ideal battery anode. However, dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide salt enables the high-rate cycling of a lithium metal anode at high Coulombic efficiency (up to 99.1%) without dendrite growth. With 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane as the electrolyte, a lithium|lithium cell can be cycled at 10 mA cm−2 for more than 6,000 cycles, and a copper|lithium cell can be cycled at 4 mA cm−2 for more than 1,000 cycles with an average Coulombic efficiency of 98.4%. These excellent performances can be attributed to the increased solvent coordination and increased availability of lithium ion concentration in the electrolyte. Further development of this electrolyte may enable practical applications for lithium metal anode in rechargeable batteries.
Highlights
Lithium metal is an ideal battery anode
It is well established that the plating/stripping efficiency of Li metal in electrolytes with carbonate solvents such as propylene carbonate (PC) is poor and typically results in dendritic Li metal deposits and a low Columbic efficiency (CE) of only o80%9,12
The solid-electrolyte interphase (SEI) layers dominated by these components are usually not strong enough to accommodate the rapid changes in the morphology of the plated Li; Li dendrites readily penetrate the SEI layer and lead to battery short circuits
Summary
Lithium metal is an ideal battery anode. dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. We report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide salt enables the high-rate cycling of a lithium metal anode at high Coulombic efficiency (up to 99.1%) without dendrite growth. We demonstrate that the use of highly concentrated electrolytes composed of ether solvents and the salt lithium bis(fluorosulfonyl)imide (LiFSI or LiN(SO2F)2)[30] results in the dendrite-free plating of Li metal at high rates and with high CE. This exceptional performance cannot be achieved when lower concentration electrolytes are used (with or without LiFSI) and when LiFSI is substituted with other salts. The fundamental mechanism behind the excellent performance of these electrolytes will be discussed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.