Abstract

Recent advances in fluorescent carbon dots have shown great potential for the sensing of biological molecules. In this study, one-step hydrothermally synthesised carbon dots (CD) and nitrogen doped carbon dots (NCD) with high quantum yields of 54.29% and 89.82%, respectively, were investigated and demonstrated to be a reliable, cost-effective, and naked-eye fluorescent probe for the detection of dopamine, a neurotransmitter, in human serum fluids. The current study is well supported by a comprehensive synthesis approach and has been described utilizing a variety of microscopic and spectroscopic techniques. The discovered approach is time and pH dependent, and it provides a robust platform for specifically detecting aberrant dopamine levels using a fluorescence quenching mechanism. Dopamine detection limits for CD were calculated to be 5.54 μM for CD and 5.12 μM for NCD, respectively. The fluorescence quenching shows a linear continuous trend with a range within 3.3-500 μM and 3.3-400 μM of dopamine concentration for CD and NCD respectively. To further verify the sensitivity of CD and NCD as fluorescent probes, interference studies in the presence of different biological components were also studied and validated. This work shows that carbon-based nanomaterials and their doped nanostructures, due to their high fluorescence, have significant potential as fluorescent probes in neurological disease diagnosis as they display high selectivity, sensitivity and fast responses in the real time spectroscopic detection of dopamine in human fluid samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.