Abstract

We have fabricated, by simultaneous DC and RF magnetron sputtering, multilayer transparent electrodes having much lower electrical resistance than the widely used transparent conductive oxide electrodes. The multilayer structure consists of three layers (ZnO/Ag/ZnO). Ag films with different film thickness were used as metallic layers. Optimum thicknesses of Ag and ZnO films were determined for high optical transmittance and good electrical conductivity. Several analytical tools such as spectrophotometer, atomic force microscopy, scanning electron microscopy and four-point probe were used to explore the possible changes in electrical and optical properties. A high quality transparent electrode, having resistance as low as 3 Ω/sq and high optical transmittance of 90% was obtained at room temperature and could be reproduced by controlling the preparation process parameters. The electrical and optical properties of ZnO/Ag/ZnO multilayers were determined mainly by the Ag film properties. The performance of the multilayers as transparent conducting materials was also compared using a figure of merit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.