Abstract
AbstractWe have studied the surface passivation of silicon by deposition of silicon nitride (SiN) in an industrial‐type inline plasma‐enhanced chemical vapor deposition (PECVD) reactor designed for the continuous coating of silicon solar cells with high throughput. An optimization study for the passivation of low‐resistivity p‐type silicon has been performed exploring the dependence of the film quality on key deposition parameters of the system. With the optimized films, excellent passivation properties have been obtained, both on undiffused p‐type silicon and on phosphorus‐diffused n+ emitters. Using a simple design, solar cells with conversion efficiencies above 20% have been fabricated to prove the efficacy of the inline PECVD SiN. The passivation properties of the films are on a par with those of high‐quality films prepared in small‐area laboratory PECVD reactors. Copyright © 2004 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Photovoltaics: Research and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.