Abstract

Single-walled carbon nanotube (SWNT) forest synthesis using antenna-type remote plasma chemical vapor deposition (ARPCVD) is presented. A series of synthesis using carbon monoxide gas as carbon feedstock reveals that the remote conditions, in other words, distance between an antenna and a substrate affects the quality of nanotube significantly. That is, far distance geometry on ARPCVD creates high-quality SWNTs. It motivates us to use same methodology for the synthesis using CH4/H2 previously proven to make long SWNT forests. Finally, along the methodology, we achieve to make SWNT forest with high-quality and small diameter successfully. This study offers an important suggestion to embody SWNT forests with both length and quality using remote plasma CVD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.